Groundwater – Surface-water Interactions

Benjamin Schwartz

TX State University, Department of Biology and EARDC

http://water.usgs.gov/edu/earthwherewater.html

Where is Earth's Water?

Source: Igor Shiklomanov's chapter "World fresh water resources" in Peter H. Gleick (editor), 1993, Water in Crisis: A Guide to the World's Fresh Water Resources. NOTE: Numbers are rounded, so percent summations may not add to 100.

Red River at Hwy. 259 Pecan Point 6/1/15 http://txktoday.com/news/monday-red-river-flood-update/

R R Boat Ramp, Lake Meredith: http://www.expressnews.com/150years/

- Interactions
 - Recharge
 - Discharge
 - Hyporheic Zone
- Examples
 - Recharge in the Hill Country
 - Tree-water interactions
 - Hydrogeochemistry and baseflows
- Why GW-SW interactions are so important

- Recharge
 - Infiltration/percolation
 - Sinkholes
 - ASR

Hill Country Example: Tree-Water Interactions

- Discharge
 - Springs
 - Baseflow to streams
 - Pumping/extraction

Hyporheic exchange

Baseflow and Recharge Relationships

Water and Nutrients

- Recharge
 - Infiltration/percolation
 - Sinkholes
 - ASR
- Discharge
 - Springs
 - Baseflow to streams
 - Pumping/extraction
- Hyporheic exchange

- Recharge
 - Infiltration/percolation
 - Sinkholes
 - ASR

http://www.agronomy.lsu.edu/courses/agro2051/chap06.htm

Macropores!

- Recharge
 - Infiltration/percolation
 - Sinkholes
 - ASR

Megapores!

SW almost instantaneously enters the GW system.

- Recharge
 - Infiltration/percolation
 - Sinkholes
 - ASR

An example from San Antonio, TX

- Recharge
 - Infiltration/percolation
 - Sinkholes
 - ASR
- Discharge
 - Springs
 - Baseflow to streams
 - Pumping/extraction
- Hyporheic exchange

- Discharge
 - Springs
 - Baseflow to streams
 - Pumping/extraction

The 'Charismatic Megafauna' of GW systems, springs are indicators of aquifer health.

- Discharge
 - Springs
 - Baseflow to streams
 - Pumping/extraction

Baseflow is why streams continue to flow, even when it hasn't rained recently.

- Discharge
 - Springs
 - Baseflow to streams
 - Pumping/extraction

The GW-SW interaction that many people don't see.

- Recharge
 - Infiltration/percola
 - Sinkholes
 - ASR
- Discharge
 - Springs
 - Baseflow to stre
 - Pumping/extrac

The Hyporheic Zone: an interface zone of dynamic boundaries and reactions.

Hyporheic exchange

http://www.bgs.ac.uk/research/groundwater/catchment/hyporheic_zone/home.html

- Hyporheic exchange:
 - Important for water quality and biotic health.
 - A steep geochemical gradient where rapid and important biogeochemical reactions occur.
 - Important for attenuating flooding and storm-waters (bank storage).

Case Studies of GW-SW Interactions:

Research at Cave Without a Name (no, really!)

Cave Without A Name

Factors controlling recharge thresholds; can recharge be predicted at a site scale?

What is a recharge threshold, and how does it work?

Three variables are important in this type of model:

- P_s = Sum of precipitation during each event
- θ = Volumetric soil moisture [%] prior to precipitation event
- PET₁₂₋₁₄ = Sum of
 Potential Evaporation
 during the 12 to 14 weeks
 prior to a rain event
- Other variables were tested, but rejected

Mixed Effect Model (n=79)

		Model Selection			
N	/lodel	nPar	AIC	AICC	Akaike wt
Р	rob.=1	2	102.62	102.78	0.00
P	rob.=P _S	3	68.49	68.81	0.00
Р	rob.=P _S +P _d	4	70.47	71.01	0.00
Р	$rob.=P_S+\theta$	4	59.38	59.92	0.15
Р	rob.=P _S +PET ₈	4	61.83	62.37	0.04
Р	$rob.=P_S+P_d+\theta$	5	61.29	62.11	0.05
Р	rob.=P _S +P _d +PET ₈	5	62.57	63.40	0.03
Р	rob.=P _S +θ+PET ₈	5	56.92	57.74	<u>0.45</u>
Р	$rob.=P_S+P_d+\theta+PET_8$	6	57.53	58.70	0.28

Variables in Selected Model					
Coefficient	Estimate	Standard Error	z value	Pr (> z)	
Intercept	-7.17	2.59	-2.76	0.006	
P_s	0.20	0.05	3.68	< 0.005	
θ	0.17	0.07	2.40	0.016	
PET _s	-0.01	0.00	-1.83	0.067	

Classification Table (Generating Data Set)

Predicted

Observed	No Response	Response	% Correct
No Response	53	1	98.1%
Response	8	17	68.0%
Overall % Correct			88.6%

Classification Table (Non-Generating Data Set)

Predicted

Observed	No Response	Response	% Correct
No Response	51	6	89.5%
Response	5	18	78.3%
Overall % Correct			86.3%

Multiple Linear Regression models are reasonably good at predicting the magnitude of a response

Most important predictor variables:

P_s and PET₁₀

Stem water stable isotopes over time as evidence of GW-SW interactions

(Tree-water interactions research with Dr. Susan Schwinning)

GW-SW interactions in a VA cave system

Benjamin F. Schwartz¹ Matthew D. Covington², Joseph Myre², Katarina Kosič Ficco³, Evan Thaler²

- 1) Department of Biology and Edwards Aquifer Research and Data Center, Texas State University, San Marcos, TX, USA
 - 2) Department of Geosciences, University of Arkansas, 216 Ozark Hall, Fayetteville, AR, USA
 - 3) Karst Science, Univerza v Novi Gorici, Vipavska 13, Si-5000, Nova Gorica, 5000, Slovenia

Conceptual model

- Build a network of instrumentation with the primary goal being long-term data
- Encourage added-value collaborations and smaller/shorter studies
- Leverage network for additional funds and research
- Develop a network of instruments and data: the research and collaborations will follow
- Create an open and well-documented database where data are available for all to access

Summary:

- GW-SW interactions involve the movements of water and transported materials (solutes, sediments, etc) into and out of the two systems.
- 2. Scales of interactions range from cm to km, and seconds to millennia.
- 3. Both GW and SW are integral components of the water cycle.

4. GW-SW interactions often occur in unexpected places and ways, and have unexpected consequences.

Why should we care?

- 1. GW-SW interactions influence the landscape, the water cycle, nutrient cycles, and aquatic ecosystems.
- 2. In Texas, water availability and quality is a huge issue, and will only continue to become more and more so.

3. Groundwater and surface-water regulation/management strategies do not recognize the full extent of these interactions, which will cause more and more problems.

4. GW-SW interactions affect more than just water budgets.

Acknowledgements:

Funding: Cave Conservancy Foundation, TX Advanced Research Program, USGS-NIWR.

Collaborators: Matt Covington, Brett Gerard, Weston Nowlin, Susan Schwinning

Field and Lab Assistance: Stephen Curtis, Heather Dammeyer, Ben Hutchins, Kelly Kukowsky, Katie Junghans, Lauren Loney, Hank Marley, Jacob Martin, Gabrielle Timmins, Ben Tobin, Philip Ramirez

Mike Burrell: Manager of Cave Without A Name Tom Summers: Owner of Cave Without a Name

Preliminary Data

